

Pergamon

0040-4039(94)01700-X

Structure of Cypemycin, a New Peptide Antibiotic

Yoshinori Minami*, Ken-ichiro Yoshida, Ryotaro Azuma, Akira Urakawa, Takashi Kawauchi and Toshio Otani Tokushima Research Center, Taiho Pharmaceutical Co., Ltd. Kawauchi-cho, Tokushima 771-01, Japan

Kanki Komiyama and Satoshi Omura The Kitasato Institute and School of Pharmaceutical Sciences of Kitasato University Shirakane, Minato-ku, Tokyo 108, Japan

Abstract: The structure of cypemycin, a new peptide antibiotic, was determined by means of FAB-MS, NMR, and amino acid analysis. The data have revealed cypemycin as being a structurally unique peptide antibiotic that contains a sulfide bridge at its C-terminus as well as four α,β -unsaturated amino acids.

Recently, we reported the isolation of cypemycin from the fermentation broth of *Streptomyces* sp. OH-4156¹ and characterization of its biological properties. The antibiotic showed antimicrobial activity against *Micrococcus luteus* (MIC = 0.2 μ g/ml) together with cytotoxicity against P388 leukemia cells *in vitro*. In this communication, we disclose the structure of cypemycin (1), which is a unique peptide antibiotic possessing a sulfide bridge at its C-terminus and four α , β -unsaturated amino acids.

Fig. 1 The structure of cypemycin (1).

The physico-chemical properties of cypemycin (1) were already reported in a previous paper.¹ Antibiotic 1 was negative to ninhydrin, but showed strong absorption at 1660 cm⁻¹ and 1530 cm⁻¹ in IR spectrum, suggesting the antibiotic to be a peptide. The nominal mass of the molecular weight was determined to be 2094 by FAB-MS, in which the quasi-molecular ion peaks $[M+H]^+$, $[M+Na]^+$ and $[M-H]^-$ appeared at m/z 2095, 2117 and 2093, respectively. The amino acid analysis of the hydrolyzate of 1 (6N HCl, 130°C, 3 hr) gave the amino acid composition of 1 as Ser, 2Glx, 2Pro, Gly, 2Ala, Cys, 3Val, 2alle, Leu, and Phe (Table 1). However, the sum of the molecular weights of those amino acid residues was only about 1600, which was

much lower than that determined by FAB-MS. The shortage suggested the presence of some unusual amino acids in the molecule.

Table 1Amino acid analysis of the hydrolyzate of cypemycin (1).

Fig. 2 FAB-B/E linked scan spectrum of cypemycin (1). (matrix; Magic Bullet)

The ¹H-NMR spectrum of 1 showed four coupled methin-methyl systems, an AMX spin system, and an N-dimethyl signal together with the signals due to the residues determined by amino acid analysis. Further analysis by COSY, HOHAHA, and ROESY (τ_m =100ms) experiments enabled us to assign those signals due to

the unusual amino acids. Chemical shifts of the four methin-methyl systems together with NOE between the methin and singlet amide signal in each system revealed the presence of four 2,3-didehydro-2-aminobutyric acids (Dhb). The NOEs also proved the configurations of all double bonds to be E. The AMX spin system was assigned to be an 2-aminovinyl (Avi) group, and the NOE between the Cys- β and Avi-1' showed the connection of this unit to the sulfur atom of Cys. The vicinal coupling constant of the double bond (J=11Hz) revealed Z-configuration for the double bond of the Avi moiety. The remaining N-dimethyl signal correlated in the ROESY spectrum to the α -proton of an Ala residue, which lacked the amide proton signal. Accordingly, the N-dimethyl group was assigned to an AlaMe2 residue, which was placed at the N-terminal position of 1. The presence of the N-dimethyl group at the N-terminus of 1 explains the negative reaction to ninhydrin. These substructures along with the normal amino acid residues gave a molecular formula of C99H154N24O24S, which is consistent with the molecular weight determined by FAB-MS. Further analysis including HMQC and HMBC experiments allowed the assignment of all ¹H and ¹³C-signals to elucidate the structures of those unusual amino acids as well as residues observed in amino acid analysis (Table 2).

The blocked N-terminus and the presence of four α , β -unsaturated amino acids hampered the sequential analysis by degradation study. Thus, the sequential analysis of 1 was performed by means of fragmentation in FAB-MS and NMR method. The FAB-B/E linked scan (m/z 2095 [M+H]⁺ as a parent ion) spectrum with collision-induced degradation (CID)² showed remarkable fragment ion peaks due to a series of acylium ions starting from the N-terminus (Fig. 2), then the sequence from AlaMe₂-1 to Gln-14 was ambiguously determined. On the other hand, the NMR sequential analysis was performed based on NOE correlations and ¹H-¹³C long-range couplings. The interresidual NOE as shown in Fig. 3 proved the sequence from AlaMe₂-1 to Pro-3, from Ala-4 to Cys-19, and from the C-terminal Val-21 to Cys(Avi)-19 through a sulfide bridge. Furthermore, ¹H-¹³C long-range couplings complemented the sequence from Pro-3 to Ala-4, from Pro-6 to alle-18, and the position of the Cys(Avi) bridge. Although only Leu-20 did not afford clear interresidual NOE or ¹H-¹³C long-range coupling due to the signal broadening, Leu-20 should be placed between Cys-19 and Val-21 to satisfy the above FAB-MS and NMR data.

Fig. 3 Sequential NOE and HMBC correlations of cypemycin (1).

Consequently, the structure of cypemycin was determined as shown in Fig. 1. The presence of unusual building blocks including a sulfide bridge as well as four α , β -unsaturated amino acids revealed that, the antibiotic was structurally similar to a class of peptide antibiotics including nisin³ and epidermin⁴, which were proposed by Jung to be classified as lantibiotics.⁵ However, these lantibiotics generally have many sulfide bridges in their molecule, in contrast, cypemycin possesses only one sulfide bridge at its C-terminus, and the major part of the molecule forms a single peptide chain. These characteristics of the structure suggest this antibiotic being a unique peptide related to lantibiotics.

		Chemical shifts (ppm)		Che		Chemical sh	Chemical shifts (ppm)			Chemical shifts (ppm)	
Residue		¹ H	13 _C	Residue		1 _H	13 _C	Residue		1 _H	13 _C
AlaMe ₂	CO		171.90	Val-8	δ	0.81	17.94	Gly-15	α	3.79,3.88	42.26
-1 Μe α β	Me ₂	2.26	41.10	Ala-9	CON	7.86	171.90	Ser-16	CON	8.16	172.61
	α	3.41	64.85		α	4.23	48.44		α	4.20	56.10
	β	1.14	11.51		β	1.20	17.35		β	3.92,3.73	61.32
Dhb-2	CON	9.71	166.65	Gln-10	CON	7.70	170.99		OH	5.50	
	α		131.10		α	4.12	52.48	Dhb-17	CON	9.65	165.05
	β	5.70	121.23		β	1.73,1.57	27.76		α		129.56
	γ	1.71	12.02		γ	1.88	31.17		β	6.57	130.83
Pro-3 C α β γ δ	CO		171.04		δ,ε	7.03,6.65	173.51		γ	1.68	12.86
	α	4.28	60.68	Phe-11	CON	8.04	170.93	alle-18	CON	7.47	170.62
	β	2.22,1.75	29.24		α	4.54	54.22		α	4.13	58.13
	γ	1.86,1.78	24.78		β	3.01,2.79	37.77		β	1.89	35.25
	δ	3.56,3.37	48.96		1'		137.62		γ	1.36,1.18	25.30
Ala-4 C α β	CON	8.00	172.04		2',6'	7.23	129.15		δ	0.84	11.26
	α	4.32	48.39		3',5'	7.22	127.94		ε	0.87	14.72
	β	1.32	17.03		4'	7.15	126.15	Cys(Avi)	CON	7.65	169.42
Dhb-5	CON	8.95	165.90	Val-12	CON	7.94	171.12	-19	α	4.64	52.05
	α		130.83		α	4.15	58.13		β	3.08,2.85	37.04
	β	5.74	122.27		β	1.96	29.83		1'	5.47	99.84
	γ	1.66	12.02		γ	0.76	18.23		2'	7.11	132.09
Pro-6	CO		171.43			0.78	19.11		N-3'	8.70	
	α	4.28	61.02	alle-13	CON	7.79	171.32	Leu-20	CON	7.46	172.38
	β	2.22,1.85	29.32		α	4.28	56.10		α	3.93	54.90
	γ	1.92,1.86	24.78		β	1.82.	36.41		β	1.63,1.48	39.38
	δ	3.51	48.83		γ	1.31,1.07	25.53		γ	1.63	24.20
Dhb-7	CON	8.92	164.06		δ	0.81	11.36		δ	0.93	22.27
	α		129.78		ε	0.80	14.53			0.84	21.69
	β	6.47	130.11	Gln-14	CON	7.95	171.52	Val-21	CON	7.71	169.01
	γ	1.64	12.77		α	4.25	52.48		α	3.92	59.57
Val-8 C α β	CON	7.24	170.84		β	1.90,1.80	27.67		β	2.05	28.51
	α	4.14	58.61		γ	2.13	31.33		γ	0.78	18.90
	β	2.04	29.83		δ,ε	6.77,7.22	173.76			0.89	19.47
	γ	0.85	18.97	Gly-15	CON	8.09	169.36				

Table 2. NMR data of cypemycin (1). (400MHz for ¹H, 100MHz for ¹³C, in DMSO-d6 at 30°C)

REFERENCES AND NOTES

- 1) Komiyama, K.; Otoguro, K.; Segawa, T.; Shiomi, K.; Yang, H.; Takahashi, Y.; Hayashi, M.; Otani, T.; Ōmura, S. J. Antibiot. 1993, 46, 1666-1671.
- 2) Heerma, W.; Kamerling, J. P.; Slotboom, A.J.; van Scharrenburg, G. J. M.; Green, B. N.; Lewis, I. A. S. Biomed. Mass. Spectrom. 1983, 10, 13-16.
- 3) Gross, E.; Morell, J. L. J. Am. Chem. Soc. 1971, 93, 4634-4635.
- (a) Allgaier, H.; Jung, G.; Werner, R.-G.; Schneider, U.; Zähner, H. Angew. Chem. Int. Ed. Engl. 1985, 24, 1051-1053;
 (b) Allgaier, H.; Jung, G.; Werner, R.-G.; Schneider, U.; Zähner, H. Eur. J. Biochem. 1986, 160, 9-22.
- (a) Schnell, N.; Entian, K.-D.; Schneider, U.; Götz, F.; Zähner, H.; Kellner, R.; Jung, G. Nature 1988, 333, 276-278;
 (b) Jung, G. Angew. Chem. Int. Ed. Engl. 1991, 30, 1051-1068.

(Received in Japan 30 June 1994)